\qquad

Quiz 8

Question 1. (8 pts)

We have learned that if two square matrices A and B are similar, then A and B have the same eigenvalues. In this question, let us see what is the relation between the eigenvectors of A and the eigenvectors of B.
(a) Accept as a fact that $A=\left[\begin{array}{cc}4 & 2 \\ 3 & -1\end{array}\right]$ is similar to the diagonal matrix $D=\left[\begin{array}{cc}5 & 0 \\ 0 & -2\end{array}\right]$. In fact, we have

$$
D=P^{-1} A P
$$

where $P=\left[\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right]$. Find the eigenvectors of A and D for the eigenvalue $\lambda=5$. Are they the same up to a scalar constant? In other words, are they multiple of each other?

Solution: The eigenvector of A belonging to 5 is

$$
v=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

which is the first column of P. The eigenvector of D belonging to 5 is

$$
w=e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Clearly, they are not multiple of each other.
(b) In general, suppose B is similar to C, say $B=Q^{-1} C Q$. If v is an eigenvector of B belonging to eigenvalue λ_{0}, then show that $Q v$ is an eigenvector of C belonging to the same eigenvalue λ_{0}.

Solution: Since $B=Q^{-1} C Q$, we have $C=Q B Q^{-1}$. Therefore,

$$
C(Q v)=Q B Q^{-1}(Q v)=Q B(v)=Q\left(\lambda_{0} v\right)=\lambda_{0} Q v
$$

So $Q v$ is an eigenvector of C belonging to the eigenvalue λ_{0}.

Question 2. (12 pts)

Find the general solution to the following system of differential equations:

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

where $A=\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 4 & -3 \\ -2 & 2 & -1\end{array}\right]$.

Solution:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
-\lambda & 2 & -3 \\
-2 & 4-\lambda & -3 \\
-2 & 2 & -1-\lambda
\end{array}\right| \\
& \text { cofactor expansion along the first row } \\
& =-\lambda\left(\lambda^{2}-3 \lambda+2\right)-2(2 \lambda-4)-3(4-2 \lambda) \\
& =-\lambda(\lambda-1)(\lambda-2)-4(\lambda-2)+6(\lambda-2) \\
& =[-\lambda(\lambda-1)+2](\lambda-2) \\
& =-\left(\lambda^{2}-\lambda-2\right)(\lambda-2)=-(\lambda+1)(\lambda-2)^{2}
\end{aligned}
$$

So the eigenvalues are -1 and 2 . When $\lambda=-1$, then

$$
v_{1}=(1,1,1)^{T} .
$$

When $\lambda=2$, there are two linearly independent eigenvectors

$$
v_{2}=(1,1,0)^{T}, v_{3}=(-3,0,2)^{T} .
$$

So the general solution is

$$
\mathbf{x}(t)=c_{1} e^{-1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{3} e^{2 t}\left[\begin{array}{c}
-3 \\
0 \\
2
\end{array}\right]
$$

In other words,

$$
\left\{\begin{array}{l}
x_{1}(t)=c_{1} e^{-t}+c_{2} e^{2 t}-3 c_{3} e^{2 t} \\
x_{2}(t)=c_{1} e^{-t}+c_{2} e^{2 t} \\
x_{3}(t)=c_{1} e^{-t}+2 c_{3} e^{2 t}
\end{array}\right.
$$

